【www.mgm4858.com】化学家合成“最小”细菌 只有4柒十个基因/中中原人民共和国食物科学手艺学会

当谈到基因组的大小时,一种被称为衣笠草的罕见日本植物无疑是当下的重量级冠军——其脱氧核糖核酸数量是人类的50倍。而在天平的另一端,一个新的轻量级纪录保持者如今诞生在美国加利福尼亚州的一个培养皿中。在3月25日出版的《科学》杂志中,由基因组测序先驱Craig
Venter率领的研究人员报告称,他们设计并制造出一种在自由生物体中具有最小基因组,以及最少基因的细菌,但却依然具有自我复制能力。

美制造出迄今最简单人造合成细胞

核心提示:日前,国内各大媒体均以《世界首个人造生命在美诞生》为题,报道美国生物学家克雷格·文特尔(J.
Craig
Venter)在实验室中重塑“丝状支原体丝状亚种”的DNA,并将其植入去除了遗传物质的山羊支原体体内,创造出历史上首个“人造单细胞生物”。这一成果被报道后,引起了社会各界的广泛关注,我们究竟该如何看待这一成果呢?日前,国内各大媒体均以《世界首个人造生命在美诞生》为题,报道美国生物学家克雷格·文特尔(J.
Craig
Venter)在实验室中重塑“丝状支原体丝状亚种”的DNA,并将其植入去除了遗传物质的山羊支原体体内,创造出历史上首个“人造单细胞生物”。这一成果被报道后,引起了社会各界的广泛关注,我们究竟该如何看待这一成果呢?辛西娅——后基因组时代生命科学发展的必然结果早在1995年,文特尔便开始了对生殖道支原体进行基因测序研究。选取生殖道支原体作为研究对象,只是因为它只有1条染色体和517个基因,是人类目前发现的基因组最小的生物。1999年1月,文特尔又进一步确定这些基因中的必需基因。并在《科学》杂志发表论文提出“最小基因组”的概念,即任何独立生存的生物,至少需要300个基因才能保持生存,并大胆作出“十年之内可能出现人造生命”的预言。2007年6月文特尔创立了被称为“造物术”的染色体移植技术,实现了完整基因组在物种之间的转移;2008年1月,文特尔合成丝状支原体的最小基因组;2009年,文特尔将丝状支原体的最小基因组移植到去除DNA的山羊支原体体内;2010年3月,文特尔证实含有人造DNA的山羊支原体能够正常生长繁殖。历时15年的孕育,“辛西娅”终于诞生。退回10年,以上每一步工作都异常艰辛,但是进入“后基因组时代”,被誉为“解析生命密码”的DNA测序变得成本越来越低,速度也越来越快。当年耗时数年、耗费数百万美元的工作,今天也许在几天内,仅花费几千美元就可以解决。另外,基因数据库内容不断扩充,DNA合成技术日臻成熟,染色体移植技术开始出现。因此,辛西娅的诞生,在业内人士看来并不突然。“首次创造生命”之说言之过甚新闻媒体中广为使用的“首次合成人工生命”之说,并不严谨。文特尔的成功之处,在于用化学试剂合成了人工染色体,并在另一微生物中显示出生物功能。DNA是决定生物性状的遗传密码,却不是生命的唯一组成部分。从这个意义上讲,文特尔只不过创造了部分生命。这项研究成果最为直接的意义,只是人造的支原体可以利用化学合成的染色体生存繁殖,并导致山羊的乳腺炎。事实上,文特尔本人在美国《科学》杂志上发表的文章题目更为客观、严谨——《首次合成由化学合成基因组控制的细菌》。《科学》杂志的相关评论指出,这项研究成果其实并不是首次创造新的生命形式,科学的定义应该是“生命再创造”或“篡改生命”。因为辛西娅除了染色组是人工合成外,生命体的其他组分均是来自于已有生命形式。但是,无论如何,这项历时15年、耗资4000万美元的科研成果,毕竟是人类生命科学发展的一大进步。英国《经济学家》将此成果与上世纪的原子弹爆炸相提并论,后者直接结束了第二次世界大战,但其意义多限于人类对自然的破坏。而辛西娅的诞生则意味着人类创造了自然,利用该技术短期内可以为人类制造环保的燃料。从长远的角度看,它的深远影响更是难以预估。辛西娅的诞生,再次将文特尔推到新闻媒体的镁光灯下,这让人不禁想起10年前的一幕。文特尔代表自己的私人公司塞莱拉基因公司(Celera
Genomics)和公共财政资助的国际人类基因组计划项目负责人朗西斯·柯林斯联合宣布,完成了人类基因组草图的绘制。当年,文特尔研究人类基因组的商业动机为世人所不齿。极具戏剧色彩的是,10年后,同一主人公在人类历史上首次合成单细胞生物,舆论又是一片哗然。这次,批评家更是将此举比作“科学怪兽对上帝的冒犯”。2000年,文特尔和柯林斯宣布完成人类基因组框架图时,人们对这一伟大工程报以种种美好愿景。可是,“后基因组时代”的10年,我们一方面看到了生命科学的发展突飞猛进,另一方面,不得不对HGP研究成果不能直接用于医疗实践表示遗憾。今年4月《自然》杂志推出专刊讨论《人类基因组测序十年记》。5月21日“首个单细胞生命”在文特尔手中诞生。这一历史突破,可视为是对“人类基因组测序完成十周年”的最好纪念,同时也是对近10年的“后基因组时代”生命科学迅速发展的最好诠释。合成生物学——人工合成还是歇斯底里?www.mgm4858.com,根据文特尔的预言,随着合成生物学的发展,21世纪人类所面临的种种问题,如资源耗竭、气候变暖等都将最终由人造生命——微生物来解决。合成生物学是“后基因组时代”生命科学研究的新兴领域。该学科通过对多种天然的或人工设计的生物学元件进行合理、系统的组装,实现生命系统的重构。该技术将“结构基因时代”的DNA解构发展为“后基因组时代”的生命建构。这一由破到立的方式转变,是生命科学不断发展的必然结果。2002年,纽约大学病毒学家埃卡德·维默尔宣布利用购买的DNA片段,制造出了人工合成的脊髓灰质炎病毒。2003年,美国麻省理工学院成立了“标准生物部件”登记处,收集标准生物部件,供全世界科学家索取,组装人造生命。2005年,美国麻省理工学院的恩迪提出了合成生物学的思想体系,包括标准化元件的使用,标准组装方法以及系统的抽象化。2010年,文特尔利用合成生物学的手段创造出世界首个单细胞生物。将合成生物学的发展推向了新的高度。合成生物学的核心研究内容在于重塑生命。人们可以利用化学试剂直接合成染色体,进而创造新的物种。这种做法打破了“自然”与“非自然”的界限,因此,合成生物学的发展过程一直伴随着人们对该学科伦理道德的争论。对于保守人士来说,生物合成学是对“行使造物权力的上帝”的最大冒犯。生物合成学的重要成果
“人工合成”(Synthetic)则被称为“综合歇斯底里”(Synthetic
hysteria)。但是科学的发展是不可逆转的,DNA的演化与变异将不再仅仅发生在自然界,它同样可以在实验室的试管中完成。通过对现有生物体有目的的改造,可以在未来使用“人工生命”合成新医药材料、生物燃料,并可以降解有机废物和吸收二氧化碳。这些应用才是生物学家开创合成生物学的真正初衷。当生命科学进入后基因组时代的第10年,合成生物学开始制造人工生命。我们感叹于现代科技的高度发达。但这项研究成果不应当被看做是人类征服自然的手段,我更愿意将此看做是自然教授给人类的又一新知,是人类“道法自然”的更高境界。面对“人造生命”带来的种种困惑,让我们重温诺贝尔奖得主史怀哲,在一个世纪前关于“敬畏生命”的论述:有思想的人体验到必须像敬畏自己的生命意志一样敬畏所有的生命意志,他在自己的生命中体验到其他生命。对他来说,善是保存生命、促进生命,使可发展的生命实现其最高价值;恶则是毁灭生命、伤害生命,压制生命的发展。关键字:人造生命
生命科学发展

这种被称为Syn
3.0的新有机体的基因组仅留下了生存和繁殖所必需的473个基因。相比之下,人类的基因数量超过2万个。哈佛大学合成生物学家George
Church表示:“这是一项杰作。”科学家认为,这是生命科学领域的突破性进展,将有助推进对生命奥秘的认知。

创造一个生命最少需要多少个基因?大名鼎鼎的美国生物学家、科学狂人克雷格文特尔带领团队算出了目前的最小值:473个。在最新一期《科学》杂志中,他们宣称设计并制造出了最简单的人造合成细胞。

微生物流线型的遗传结构激起了进化生物学家和生物技术专家的兴趣,他们预期一个接一个地添加基因便能够研究这些基因的作用。剑桥市麻省理工学院合成生物学家Chris
Voigt表示:“这是创建一个基因组被完整定义的活体细胞的重要步骤。”但是Voigt和其他科学家指出,目前距离完整定义依然还很遥远,这是因为Syn
3.0有149个基因——大约为1/3——依然不知其功能为何。研究人员的首要任务是探索这些基因在生物体中扮演的角色,从而有望为关于生命的基本生物学带来新的认识。

这个被称为Syn3.0的人造生命在美国加利福尼亚州的实验器皿中横空出世。它的基因数量是世界上基因组规模最大的生物重楼百合的282000分之一。

就像Syn
3.0的名称所暗示的,它并非Venter制造的首个合成生物体。Venter说:“我们的研究表明,生命是如此复杂,即便是最简单的有机体也是如此。”Venter表示,要回答生命的基础问题,唯一方法是获得最简单的基因组;而要达到这个目的,唯一方法可能是人工合成基因组。因此他们从1995年开始努力,其间仅因为参与首个人类基因组测序工作而短暂中断。

Syn3.0和它的坏爸爸

2010年,Venter的研究团队报告说,他们合成了丝状支原体的单独染色体(被称为Syn
1.0),并将其移植到另一种山羊支原体中。经过几次失败的尝试,研究人员最终发现,这种合成的微生物能够正常生成蛋白质。

Syn3.0是目前已知最小、最简单的可自我复制的细胞。在实验器皿中,Syn3.0的数量每3个小时就可以翻倍。这说明尽管它的基因组很苗条,它依然活得很好。

在当前的工作中,Venter与J. Craig Venter研究所的Clyde
Hutchison等人通过剥离Syn
1.0携带的不必要的基因,从而尝试确定生命所需的最小基因集合。

在进一步交代Syn3.0诞生故事之前,有必要先说一说Syn3.0之父文特尔。

研究人员最初分为两个团队,每个团队都有一个相同的任务——利用所有可用的基因组知识设计一种具有假定最小基因组的细菌染色体。随后两者被合成并移植到山羊支原体中,从而看看是否会生成一个有活力的生物体。

他是基因测序领域的先驱,同时也被很多生物学家称为坏小子,原因是他公然叫板国际人类基因组计划,并率领团队与其展开竞争。现在的他既是J.克雷格文特尔研究所的负责人,也是合成基因组公司的顶头上司。

“最大的新闻是我们失败了。我很惊讶。”Venter说,“我们当前的生物学知识尚不足以设计并构建一个活的有机体。”

正如Syn3.0的名字所暗示的,它并不是文特尔合成的第一个人造生命。

于是,研究人员在首个合成细胞的基础上,不断尝试删除其基因组中不必要的基因,最终把Syn
1.0中901个基因删除约一半,只剩下473个基因,即Syn 3.0。

2010年,文特尔的团队声称合成了丝状支原体的单个染色体,并把这个染色体移植到一个山羊支原体上。他们发现,这种人造微生物会合成通常属于丝状支原体的蛋白质,而不是山羊支原体的蛋白质。

Venter表示,Syn
3.0的基因组还可进一步简化,删掉一些与维持生命无关的基因,但这些基因影响生长速度,删除后细胞数量增长极其缓慢,无法用于实验目的。

这就是具有901个基因的Syn1.0。而苗条的Syn3.0正是Syn1.0减肥的结果。

至于这项工作带来的启发,Venter说,一个启发就是认识生命要从整个基因组角度综合来看,而不是独立的基因。“生命更像一个交响乐团,而不是短笛演奏家”。这一理论同样适用于人类基因组,因为他们发现人类多数疾病症状受整个基因组上突变的影响,而不是单个基因。

从1.0到3.0的减肥之路

这项研究成果将有望应用在多个领域,包括生物化学、营养学、农业以及生产新药物与生物能源等。“我认为这是一个新时代的开始,”Venter说。

怎么让Syn1.0变成更瘦的Syn3.0呢?

Venter表示:“我们还不能说这就是最终的最小基因组。”但截至目前,Syn
3.0绝对是这个世界上新的轻量级冠军。

文特尔和另一位项目领导人克莱德哈钦森的办法很简单,即拆掉Syn1.0中不太重要的基因来找出构成生命所需要的最小的基因组。

他们把Syn1.0的901个基因分成8个部分,将这些部分当成独立的模块来对待。然后逐一拆除每个模块中的DNA,再复制剩余的基因组,最后嵌入山羊支原体,看它是死还是活。如果基因组不起作用的话,他们就知道切除掉了不该切除的基因,于是再把这个基因添上。

在这一过程中,诞生了具有525个基因的Syn2.0。它是首个基因组规模小于尿道支原体的微生物。而尿道支原体是自然界中基因组规模最小的生物。

在这个笨办法的指导下,他们继续抛弃Syn2.0身上不太重要的或者与其他基因功能重合的赘肉,仅有473个基因的Syn3.0应运而生。

三分之一的Syn3.0依然成谜

Syn3.0苗条的基因结构令进化生物学家感到兴奋,他们期待把基因一个个加到它身上来研究它们的作用。

英国《卫报》在评价这一发现时说,这是人类理解生物学的里程碑事件。它可能会揭晓30亿年前原始海洋中生命的进化之谜;它可能会为人类进入定制有机体时代敲开大门。

不过,Syn3.0的发明者非常耻辱地发现,他们自己距理解这个在实验室中创造出的生命还有一段路程。研究人员承认,目前他们依然没有完全理解,或者在某些地方完全不明白,占Syn3.0基因组三分之一的149个基因到底在起哪些作用。所以,下一步他们的任务当然是搞清楚自己亲手设计的秘密。在这个过程中,可能还会有更瘦的Syn系列出现。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

标签:

相关文章

网站地图xml地图